

The **logical data type** is a special type of data that can have one of only two possible values: true or false.

Relational operators: operators with 2 numerical or strings operands that yield a logical result.

Operator	Operation
==	Equal to
~=	Not equal to
>	Greater than
>=	Greater than or equal to
<	Less than
<=	Less than or equal to

Relational operators:

Operation	Result
3<4	True (1)
3<=4	True (1)
3==4	False (0)
3>3	False (0)
4<=4	True (1)
`A'<`B'	True (1)
`a′<`B′	False (0)
0==sin(pi)	False (0)
abs(0-sin(pi))<1.0e-14	True (1)

Logic operators: operators with one or two logical operands that yield a logical result.

Operator	Operation
&	Logical AND
&&	Logical AND with shortcut
I	Logical inclusive OR
11	Logical inclusive OR with shortcut
xor	Logical exclusive OR
\sim	Logical not

Truth tables for logic operators.

Α	В	A & B	A && B	A B	A B	xor (A,B)	~A
F	F	F	F	F	F	F	Т
F	Т	F	F	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т	F
Т	Т	Т	Т	Т	Т	F	F

xor: "one or the other but not neither nor both"

Hierarchy of operations.

The order in which the operators are evaluated.

- 1. Arithmetic operators
- 2. Relational operators (==,>,...) (left to right)
- 3. \sim operators
- 4. & and && operators (left to right)
- 5. |, ||, and xor operators (left to right)

Operations at a higher level are evaluated before operations at lower levels.

- 1. Parentheses starting form the innermost and working outward
- 2. Exponentials (left to right)
- 3. Multiplications and divisions (left to right)
- 4. Additions and subtractions (left to right)

Distance travel by an object starting from rest and subjected to a constant acceleration

$$d = \frac{1}{2}at^2$$

accel = 4time = 10

Distance = $0.5*accel*time^2$ = ? Distance = $(0.5*accel*(time^2) = ?)$ Distance = $(0.5*accel*time)^2$ = ?

2^3^2=? (2^3)^2=? 2^(3^2)=?

How will you enter the following equation into MATLAB?

$$\alpha_{2} = \frac{(a+b)c^{a/b}}{a-b} = 4, b = 2, c = 2$$

$$\alpha_{2} = 2, c = 2$$

$$\alpha_{2} = \frac{(a+b)c^{a/b}}{a-b} \quad a = 4, b = 2, c = 2$$

$$\alpha_{2} = ?$$

alpha_2 =
$$((a+b)*c^(a/b))/(a-b)$$
 ?
alpha_2 = $(a+b)*c^a/b/a-b$?
alpha_2 = $((a+b)*(c^a/b))/(a-b)$?

UIPRIM

floor, fix, mod, rem, ceil and round commands

floor: Round towards minus infinity floor(4.2) = 4 floor(4.9) = 4 floor(-0.2)=-1 floor(10/3)=? floor(10/-3)=? floor(-10/3)=?	
fix: Rounds towards 0 fix(4.2) = 4 fix(4.9) =4 fix(-0.2)=0 fix(10/3)= ? fix(10/-3)=? fix(-10/3)= ?	

UIPRM

floor, fix, mod, rem, ceil and round commands

mod: modulus after division M = mod(X,Y) if Y ~= 0, returns X - n.*Y where n = floor(X./Y) By convention, mod(X,0) is X

 $\begin{array}{ll} \mbox{mod}(13,2)=1 & 13=2*6+1 \\ \mbox{mod}(2,13)=2 & 2=13*0+2 \\ \mbox{mod}(10,0)=10 & 10=0*n+1 \\ \mbox{mod}(13.34,2)=1.34 & 13.24=2*6+1.34 \\ \mbox{mod}(5,-2)=-1 & 5=-2*-3+(-1) \\ \mbox{mod}(-5,2)=1 & -5=2*-3+1 \\ \mbox{mod}(0,20)=? \\ \mbox{mod}(-20,5)=? \\ \mbox{mod}(-20,6)=? \end{array}$

UIPRM

floor, fix, mod, rem, ceil and round commands

rem: Remainder after division
 R = rem(X,Y) if Y ~= 0, returns X - n.*Y
 where n = fix(X./Y)
 By convention, rem(X,0) is NaN

rem(13,2)=1rem(2,13)=2rem(10,0)=NaNrem(13.34,2)=1.34rem(5,-2)=1rem(-5,2)=-1rem(0,20)=?rem(-20,5)=?rem(-20,6)=? 13=2*6+1 13.24=2*6+1.34 5=-2*-2+1-5=2*-2+(-1)

floor, fix, mod, rem, ceil and round commands

As long as operands X and Y are of the same sign, the statement rem(X,Y) returns the same result as does mod(X,Y).

```
mod(11,2) = rem(11,2) = 1
mod(-11,-2) = rem(-11,-2) = 1
```

However, for positive X and Y:

rem(-X,Y) = mod(-X,Y)-Y rem(-5,2)=-1=mod(-5,2)-2=1-2=-1

UIPRIM

floor, fix, mod, rem, ceil and round commands

ceil: Round toward infinity ceil(4.2) = 5 ceil(4.9) =5 ceil(-0.2)=0 ceil(10/3)= ? ceil(10/-3)=? ceil(-10/3)= ?

```
round: Round to nearest integer
round(4.5) = 5
round(4.9) =5
round(-4.5)=-5
round(-0.2)=0
round(10/3)= ?
round(10/-3)=?
round(-10/3)=?
```