Arrays

Collection of data values organized into rows and columns.

Arrays

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{l}
a=\left[\begin{array}{ll}
1 & 2 \\
4
\end{array}\right. \\
456 \\
789] \\
a=[123 ; 456 ; 789] \\
a=[1,2,3 ; 4,5,6 ; 7,8,9]
\end{array}\right.
$$

Individual data values within an array are accessed by including the name of the array followed by subscripts in parenthesis that identify the row and column of the particular value.

$$
a(2,3)=6 \quad a(3,2)=? \quad a(1,3)=?
$$

Arrays

Arrays can be classified as either vectors or matrices.
Vector: one dimensional array
Matrix: Array with two or more dimensions

Arrays

Clear all your variables and command window, then generate the following arrays in Matlab:

$$
\begin{gathered}
A=\left[\begin{array}{lll}
3 & 1 & 1 \\
2 & 6 & 1 \\
2 & 3 & 9
\end{array}\right] \quad B=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right] \quad C=\left[\begin{array}{l}
1 \\
5 \\
3
\end{array}\right] \\
D=\left[\begin{array}{cc}
B(1,3) & C(1,1) \\
A(2,1) & A(1,2)+B(1,2) \\
A(3) & A(7)
\end{array}\right]=\left[\begin{array}{ll}
? & ? \\
? & ? \\
? & ?
\end{array}\right]
\end{gathered}
$$

Arrays

$$
A=\left[\begin{array}{lll}
3 & 1 & 1 \\
2 & 6 & 1 \\
2 & 3 & 9
\end{array}\right] \quad B=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right] \quad C=\left[\begin{array}{l}
1 \\
5 \\
3
\end{array}\right]
$$

$$
\begin{array}{ll}
\mathrm{E}=\mathrm{A}(:, 1) & =? \quad(A l l \\
\mathrm{F}=\mathrm{B}^{\prime} & =? \quad \text { the values on column } 1) \\
\mathrm{G}=\mathrm{A}(2: 3,2: 3) & =? \\
\mathrm{H}=[\mathrm{A}(:, 1) \mathrm{C}] & =? \\
\mathrm{I}=\left[([\mathrm{A}(:, 1)])^{\prime} \mathrm{B}\right]=? \\
\mathrm{~J}=\left[([\mathrm{A}(:, 1)])^{\prime} ; \mathrm{B}\right]=?
\end{array}
$$

Initializing with shortcut expressions

Arr = first: increment: last
The list stops when the next value in the series is greater than the value of last

$$
\begin{array}{|llllllll}
\mathrm{K}=1: 2: 14 & =1 & 3 & 5 & 7 & 9 & 11 & 13 \\
\mathrm{~L}=1: 10 & =? & & & & & & \\
\mathrm{M}=10: 1 & =? & & & & & & \\
\mathrm{~N}=10:-1: 1 & =? & & & & & & \\
\mathrm{O}=(0: 0.25: 1)^{*} \mathrm{pi} & =? & & & & & & \\
\mathrm{P}=(3: 3: 21)^{\prime} & =? & & & & & \\
\hline
\end{array}
$$

Initializing with built-in functions

size:' return the size of the array (\#files \#columns)

$$
\begin{array}{ll}
\operatorname{size}(A)=3 & \\
{[\mathrm{nr}, \mathrm{nc}]=\operatorname{size}(P)=7} & \operatorname{lize}(P)=7 \\
\mathrm{nr}=7 \mathrm{nc}=1
\end{array}
$$

$$
\operatorname{size}(B)=?
$$

$$
\operatorname{size}(G)=?
$$

$$
[\text { nrh, nch }]=\operatorname{size}(H)=?
$$

zeros: Create an array of all zeros

$$
\begin{array}{ccc}
\text { zeros(3) } & \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}
$$

Initializing with built-in functions

$$
\begin{array}{ccc}
\text { zeros }(2,3)= \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\text { zeros(size(A))= } \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{Q}=\operatorname{zeros}(1,10) & =? \\
\mathrm{R}=\operatorname{zeros}(\operatorname{size}(\mathrm{H})) & =? \\
\mathrm{~S}=\operatorname{zeros}(5,1) & =?
\end{array}
$$

Initializing with built-in functions

ones: Create an array of all ones

$$
\begin{gathered}
\operatorname{ones}(1,3)= \\
111
\end{gathered}
$$

eye: generates identity matrices

$$
\begin{array}{rll}
\operatorname{eye}(2)= & \begin{array}{ll}
\mathrm{U}=\operatorname{ones}(4,3) & =? \\
1 & 0 \\
0 & 1
\end{array} & \mathrm{~V}=\operatorname{ones}(\operatorname{size}(\mathrm{H})) \\
\mathrm{O}=? \\
\mathrm{~W}=\operatorname{eye}(2) & =?
\end{array}
$$

length: returns the length of a vector or the longest dimension of a 2 dimensional array

$$
\text { length }(P)=7
$$

$$
\begin{aligned}
& X=\text { ones }(\text { length }(P))=? \\
& Y=\text { ones }(\text { length }(P), 1)=? \\
& Z=\text { eye }(\text { length }(P)) \quad=?
\end{aligned}
$$

