Lets introduce the concept of Time/Temperature Control for Safety (TCS)

Previously known as potentially hazardous food Information on slides 29 – 40 have been updated and modified from an FDA presentation.

Potentially Hazardous Food: The Evolving Definition of Temperature Control for Safety

- By Don Zink, PhD
- Lead Scientist Food Processing
- Office of Plant and Dairy Foods
- Center for Food Safety and Applied Nutrition
- U.S. Food and Drug Administration
- And Shirley B. Bohm, RS, MPH
- Consumer Safety Officer
- Office of Compliance, DCP, Retail Food Protection
- Center for Food Safety and Applied Nutrition
- U.S. Food and Drug Administration

NEHA Annual Educational Conference, June 26, 2005

Time/temperature control for their safety Examples of TCS Food

"PHF/TCS FOODS"*

- Means a "food that requires T/T control for safety to limit pathogenic microorganism growth or toxin formation"
 - Intrinsic factors of the food support the growth of bacterial pathogens
 - Nutrients
 - Energy source (sugars, alcohols, amino acids)
 - Nitrogen source (amino acids)
 - Vitamins and growth factors
 - Minerals

*A separate presentation explains in more details

Sliced/Diced Tomatoes

- Not heat-treated to destroy spore formers
- Not treated with any other antimicrobial process
- **o** pH is < 4.6
- o a_w is > 0.99
- Considered TCS unless a product assessment proves otherwise

Cut Melon

- Not heat-treated to destroy spore formers
- Not treated with any other antimicrobial process

o pH of melons;

- Honeydew pH = 6.3 6.7
- Watermelon pH = 5.2 5.6
- Cantaloupe pH = 6.2 7.1
- o a_w is > 0.99
- Considered a TCS unless a product assessment proves otherwise

Raw Seed Sprouts

- Not heat-treated to destroy spore formers
- Not treated with any other antimicrobial process
- o pH is > 6.5
- o a_w is > 0.99
- Considered a PHF, unless a product assessment proves otherwise

TCS Foods

Why are some foods considered non- TCS?

- If the food's $pH \le 4.6$, it is below the pH at which proteolytic Clostridium botulinum can grow and produce toxin:
 - Because of inherent acidity fruits
 - Because of acid from bacterial activity fermented sausages, fermented milks, sauerkrauts, pickles
 - Because of acidification added vinegar
- If the food's $a_w \le 0.85$, it is below the water activity at which Staphylococcus aureus grows and produces toxin:
 - Not enough water is available for metabolic activities of pathogenic bacteria
 - Low a_w increases the length of the bacterial lag phase and decreases the growth rate

Examples of food not considered TCS

- Unopened containers of hermetically sealed containers are "commercially sterile"
- Foods with laboratory evidence showing that T/T control is not required AND the food contains:
 - A preservative to inhibit pathogens see 21 CFR 172 Subpart B, Food Preservatives
 - Other barriers/hurdles to pathogenic growth
 - A combination of barriers/hurdles to inhibit pathogenic growth

8/23/2014

Examples of Non TCS* Food

• Air-cooled, hard boiled egg – shell intact

- Shell eggs treated to destroy all SE pasteurized shell eggs
- A food that does not support the growth of pathogenic microorganisms even though they may be present
- Some foods that are refrigerated for quality, not safety

8/23/2014

Interaction Tables

- The "hurdle" effect is applied when several inhibitory factors used together to control or eliminate pathogens that would otherwise be ineffective when used alone.
 - The effect of a heat treatment which destroys vegetative cells is considered
 - The effect of packaging which prevents recontamination is considered
 - When tables indicate "Product Assessment Required" (PA), the <u>food must be treated as TCS</u> <u>Food</u> until laboratory evidence shows otherwise

Refer to "Factors Affecting the Growth of Some Foodborne Pathogens" in FDA's Foodborne Pathogenic Microorganisms and Natural Toxins Handbook (Bad Bug Book) at <u>http://www.cfsan.fda.gov/~mow/factors.html</u> Tables A & B consider the interaction of pH and aw under certain conditions of heattreatment and packaging

Water Activity in Foods

- Water activity (a_w) is the water in foods that is available for metabolic purposes
 - $a_w = p / p_o$ (pure water is 1.00)
- Effect of a_w on microorganisms
 - Most spoilage organisms do not grow below 0.91
 - Spoilage molds can grow as low as 0.80
 - Staphylococcus aureus can grow as low as 0.86
 - Clostridium botulinum can grow & produce toxin as low as 0.94
 - Some parasites (Trichinella spiralis) survive at low a_w
- Water activity ranges for growth are affected by temperature and nutrient levels
- Water activity in a food can be changed by adding salt or sugar or by drying

Acidity in Foods

- pH is a measure of acidity in food using a scale of 0 to 14, with 7.0 being neutral
 - Microorganisms grow best in neutral or slightly acidic conditions
 - Yeasts and molds can grow at $pH \le 3.5$
 - Clostridium botulinum can grow and produce toxin as low as pH 4.7
 - Staphylococcus aureus can grow at pH 4.2
 - Listeria monocytogenes and Yersinia enterocolitica can grow down to pH 4.4
- The minimum pH for growth of microorganisms is dependent on many factors – inherent acidity, type of acid, salt concentration
- The further out (above or below) the optimum pH for growth, the longer the lag phase will be

Other Factors Affect Microbial Growth

- Other factors affect the growth of pathogenic microorganisms besides pH and a_w
 - Redox potential (ease of transferring electrons in food during energy metabolism)
 - Atmosphere within packaging (i.e., ROP)
 - Antimicrobials and bacteriosins (i.e., nisin)
- If other factors besides pH and a_w are used to show that the food is non-TCS, a pathogen modeling program* or laboratory evidence must be provided

*USDA's Pathogen Modeling Program can be downloaded at <u>http://www.ars.usda.gov/Services/docs.htm?docid=6784</u>

8/23/2014

Interaction Table A

Table A. Interaction of pH and a_w for control of spores in food heattreated to destroy vegetative cells and subsequently packaged.

a _w Values	pH Values				
	4.6 or less	> 4.6 - 5.6	> 5.6		
0.92 or less	Non-TCS*	Non-TCS*	Non-TCS*		
> 0.92 - 0.95	Non-TCS*	Non-TCS*	PA ***		
> 0.95	Non-TCS*	PA**	PA **		

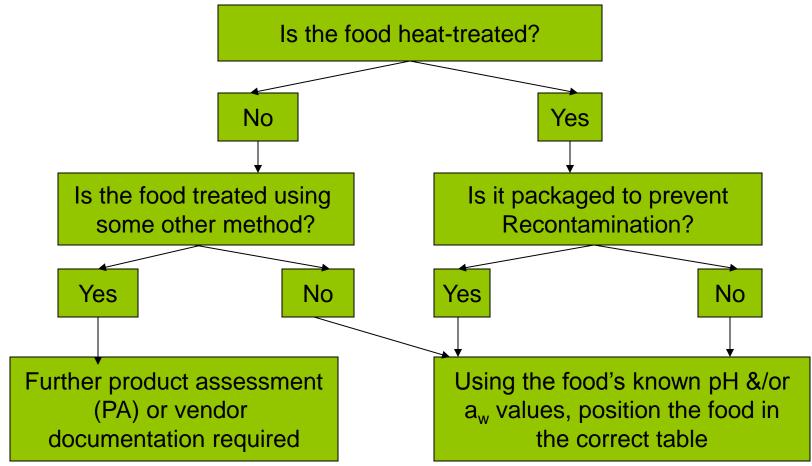
- * TCS means "Time/Temperature Control for Safety Food"
- ** PA means "Product Assessment Required"

When to Use Interaction Table A

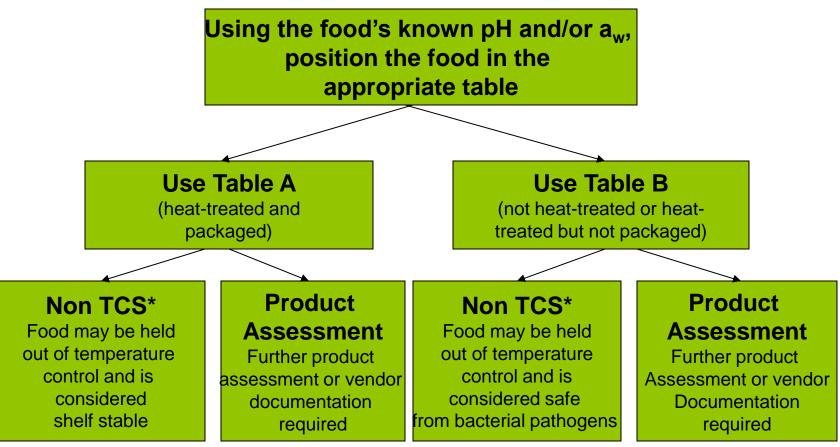
- Table A can be used to determine if a food which is heat-treated and packaged is TCS or NON TCS or Requires Product Assessment
 - Food must meet cooking requirements of Food Code section 3-401.11 (no partial cooks) to eliminate vegetative pathogens
 - Spore forming pathogens are the only remaining biological hazards of concern
 - Food is packaged to prevent re-contamination
 - Therefore, higher pH & a_w can be safely tolerated

8/23/2014

Interaction Table B


Table B. Interaction of pH and a_w for control of vegetative cells and spores in food not heat-treated or heat-treated but not packaged.

a _w Values	pH Values					
	< 4.2	4.2 - 4.6	> 4.6 - 5.0	> 5.0		
< 0.88	Non-TCS*	Non TCS*	Non—TCS*	Non TCS*		
0.88 – 0.90	Non TCS*	Non TCS*	Non TCS*	PA**		
> 0.90 - 0.92	Non TCS*	Non TCS*	PA	PA		
> 0.92	Non TCS*	PA	PA	PA		
* TCS means "Time/Temperature Control for Safety Food" ** PA means "Product Assessment Required"						


When to Use Interaction Table B

- Table B can be used to determine if a food which is not heat-treated or heattreated but not packaged is TCS or Non TCS or requires Product Assessment
 - Food not heat-treated may contain vegetative cells and pathogenic spores
 - Food that was heat-treated but not packaged may become re-contaminated
 - pH values considered in Table B must include 4.2 because Staphylococcus aureus can grow at that level

Use of a_w/pH Interaction Tables Decision Tree

Use of a_w/pH Interaction Tables Decision Tree

Application of Interaction Tables

• Preliminary questions:

- Is the food held refrigerated for quality, not safety – NOT enforceable – What is the scientific basis?
- Consider the food's safety history if not associated with foodborne outbreaks, scientific rationale should be able to explain
- Any pH and a values must be accurate and replicable from a competent laboratory
 - pH value chemistry grade pH paper accurate to ±0.05 or calibrated equipment
 - a value homogenous sample with calibrated equipment

Application of Interaction Tables

- Preliminary questions:
 - Heat-treatment must destroy vegetative cells
 - Packaging must be sufficient to prevent recontamination
 - Product assessment may result in a finding of non-TCS limited shelf life or Time as a Public Health Control, required temperature control or reformulation of product

Application of Interaction Tables - Parmesan Cheese

- Parmesan Cheese:
 - $a_w = 0.68 0.76$
 - pH = 6.5
 - curd heated to ~ 130°F & cured 2-3 years, then packaged
- Ambient storage desired & no history of related illness
- The food is heat-treated/cured & packaged
- Using this information, Table A is chosen
- Locate the cheese's a_w (0.68 0.76) in the correct line and pH (6.5) in the correct column
- They intersect at "Non TCS*"
 - No temperature control is required

Application of Interaction Tables American Process Cheese Slices

- o American Process Cheese Slices
 - $o a_w = 0.94 0.95$
 - o pH = 5.5 − 5.8
 - Heat processing and packaged to retail
- Ambient storage desired for 24 hrs.
- Cheese is heat-treated and unpackaged
- Table B is chosen because it may become recontaminated
- Locate the cheese's a_w (0.94 0.95) in the correct line and pH (5.5 – 5.8) in the correct column
- They intersect at PA Product Assessment Required
 - Challenge testing with 4 pathogens at 86°F showed no growth for 24 hrs. and no growth for 210 days when refrigerated

Application of Interaction Tables Sushi Roll with Raw Fish

• Sushi roll with raw fish:

- Cooked rice:
 - $o a_w = 0.98 0.99$
 - o pH = 6.0 6.7 (acidified rice pH = 4.2)
- Raw fish:

opH = 5.2 - 6.1 (tuna), 6.1 - 6.3 (salmon), 6.8 - 7.0 (shrimp)

Application of Interaction Tables Sushi Roll with Raw Fish

- Ambient temperature display desired for buffet line
- Only rice, not fish is heat-treated & not packaged
- Locate the food's a_w and pH in the correct line and column
- They intersect at PA product assessment required
 - The food is PHF unless reformulated in some way
 - If room temperature display (for 4 hrs.) is desired, TPHC can be used if a marking system is used and any left after 4 hrs. is discarded
 - If the sushi roll with raw fish was packaged for retail sale, Table B is still used because of the raw fish

Evaluation of Laboratory Evidence

- When is laboratory evidence likely to be used?
 - Variance application
 - Performance standard
 - o Preservatives added
 - New technologies used
 - pH and a_w Interaction Tables say "PA" Product Assessment Required
 - Multi-ingredient or combination foods with two or more distinct food components - the interface may have different properties than either of the individual ingredients

Evaluation of Laboratory Evidence

• Microbiological challenge testing

- Design, implementation and assessment must be done by an EXPERT MICROBIOLOGIST
- Failure to account for a specific product or environmental factors in the design could result in a flawed conclusion
- A competent laboratory should be used to conduct the challenge testing

Evaluation of Laboratory Evidence

 What factors should be considered in designing a challenge study?*

- Selection of challenge organism(s)
- Level of challenge inoculums
- Inoculums preparation and methodology
- Duration of the study
- Formulation factors and storage conditions
- o Sample analysis

*For more information, refer to Ch. 6 in "Evaluation and Definition of Potentially Hazardous Food" at <u>http://www.cfsan.fda.gov/~comm/ift4-toc.html</u>